Determination by high-frequency and -field EPR of zero-field splitting in iron(IV) oxo complexes: implications for intermediates in nonheme iron enzymes.

نویسندگان

  • J Krzystek
  • Jason England
  • Kallol Ray
  • Andrew Ozarowski
  • Dmitry Smirnov
  • Lawrence Que
  • Joshua Telser
چکیده

[Fe(IV)O](2+) species have been implicated as the active form of many nonheme iron enzymes. The electronic structures of iron(IV) oxo complexes are thus of great interest. High-frequency and -field electron paramagnetic resonance is employed to determine accurately the spin Hamiltonian parameters of two stable complexes that contain the FeO unit: [FeO(TMC)(CH 3CN)](CF 3SO 3) 2, where TMC = tetramethylcyclam and [FeO(N4py)](CF 3SO 3) 2, where N4Py = bis(2-pyridylmethyl)bis(2-pyridyl)methylamine. Both complexes exhibit zero-field splittings that are positive, almost perfectly axial, and of very large magnitude: D = +26.95(5) and +22.05(5) cm (-1), respectively. These definitive experimental values can serve as the basis for further computational studies to unravel the electronic structures of such complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)-oxo complexes.

Mononuclear nonheme iron enzymes generate high-valent iron(IV)-oxo intermediates that effect metabolically important oxidative transformations in the catalytic cycle of dioxygen activation. In 2003, researchers first spectroscopically characterized a mononuclear nonheme iron(IV)-oxo intermediate in the reaction of taurine: α-ketogultarate dioxygenase (TauD). This nonheme iron enzyme with an iro...

متن کامل

First-principle computation of zero-field splittings: application to a high valent Fe(IV)-oxo model of nonheme iron proteins.

We report the computational implementation of a combined spin-density-functional theory and perturbation theory (SDFT-PT) methodology for the accurate calculation of zero-field splittings (ZFS) in complexes of the most diverse nature including metal centers in proteins. We have applied the SDFT-PT methodology to study the cation of the recently synthesized complex [Fe(IV)(O)-(TMC)(NCCH(3))](OTf...

متن کامل

Mechanistic Insight into Alcohol Oxidation by High-Valent Iron-Oxo Complexes of Heme and Nonheme LigandsThis research was supported by the Ministry of Science and Technology of Korea through Creative Research Initiative Program.

High-valent iron–oxo species are frequently invoked as the key intermediates in the catalytic oxidation of organic substrates by heme and nonheme iron mono-oxygenases. In the case of heme-containing enzymes such as cytochromes P450, oxoiron(iv) porphyrin p-cation radicals have been proposed as active oxidants that effect a number of oxidation reactions, which include alkane hydroxylation, olefi...

متن کامل

Regioselectivity of aliphatic versus aromatic hydroxylation by a nonheme iron(II)-superoxo complex.

Many enzymes in nature utilize molecular oxygen on an iron center for the catalysis of substrate hydroxylation. In recent years, great progress has been made in understanding the function and properties of iron(IV)-oxo complexes; however, little is known about the reactivity of iron(II)-superoxo intermediates in substrate activation. It has been proposed recently that iron(II)-superoxo intermed...

متن کامل

Accelerated Computational Analysis of Metal−Organic Frameworks for Oxidation Catalysis

High-spin iron(IV)−oxo compounds are known to activate strong C−H bonds. Stabilizing the high-spin S = 2 electronic configuration is difficult in molecular species for homogeneous catalysis, but recent experimental and computational results suggest this can be achieved in the metal−organic framework Fe2(dobdc) (dobdc 4− = 2,5-dioxido-1,4-benzenedicarboxylate) and its magnesium-diluted analogues...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inorganic chemistry

دوره 47 9  شماره 

صفحات  -

تاریخ انتشار 2008